QUESTION BANK 2018 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE)** Subject with Code: Mathematics-I (18HS0830) Course & Branch: B.Tech – ALL Year & Sem: I-I **Regulation:** R18 UNIT –I 1. a) Find the Rank of $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$. b) Reduce the matrix $A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & -1 & 1 & 0 \\ 3 & -3 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix}$ into Echelon form and find its rank? [2M] [2M] c) Define Symmetric & Skew-symmetric matrices. [2M] d) If A= $\begin{bmatrix} 3 & a & b \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$ is symmetric, then find a, b values? [2M] e) Find the Eigen values of A= $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. [2M] 2. a) Define the rank of the Matrix. [2M] b) Find whether the following equations are consistent if so solve them x + y + 2z = 4; 2x - y + 3z = 9; 3x - y - z = 2. [8M] 3. a) Show that the matrix $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ is a orthogonal matrix. [5M] b) Express the matrix $A = \begin{bmatrix} 3 & -2 & -6 \\ 2 & 7 & -1 \\ 5 & 1 & 0 \end{bmatrix}$ as a sum of symmetric and skew-symmetric matrix. [5M] 4. a) Find the rank of the matrix A = $\begin{bmatrix} 2 & 1 & 3 & 3 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$ [5M] b) Determine the Eigen values of A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix}$ [5M] 5. a) Show that $A = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$ is orthogonal. [5M] b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ [5M] MATHEMATICS-I Page 1

QUESTION BANK	X 2018	
6. a) State Cayley-Hamilton theorem	[2M]	
b) Show that the matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation.	[8M]	
7. Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -2 \\ 2 & 1 & -2 \\ -1 & -2 \end{bmatrix}$	-3 -6. [10M]	
8. Diagonalise the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ and hence find A^4 .	[10 M]	
9. Reduce the Quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into sum of square	s form	
by Orthogonal transformation.	[10M]	
10. Reduce the Quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy + 2xz - 2yz$ into the canonical	form by	
Orthogonal transformation.	[10M]	
UNIT –II		
1. a) Evaluate the improper integral $\int_{1}^{\infty} \frac{1}{x^4} dx$.	[2M]	
 b) Define gamma and beta function. c) Prove that Γ(1)=1. d) State Rolle's theorem. e) State Lagrange's mean value theorem. 	[2M] [2M] [2M] [2M]	
 2. a) Find the surface area generated by the revolution of an arc of (catenary) curve y = c. cosh^x/_c from x=0 to x=c about the x-axis. b) Find the volume of solid generated by revolving the ellipse x²/a² + y²/b² = 1 about the major axis. 	[5M] [5M]	
3. a) Find the surface area of the sphere of radius 'a'.	[5M]	
b) Find the volume of the reel-shaped solid formed by the revolution about the y- axi		
of the part of the parabola $y^2 = 4ax$ cut off by the latus- rectum.	[5M]	
4. a) State and verify the Roller's theorem then $f(x) = \log[\frac{x^2 + ab}{x(a+b)}]$ in [a, b].	[5M]	
b) Verify lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0, 4].	[5M]	
5. a) verify Cauchy's mean value theorem for the function <i>sinx and cosx</i> in the		
interval $\left[0, \frac{\pi}{2}\right]$.	[5M]	
b) Express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of $(x - 2)$ assigning Taylor's series. [5M]		

[5M]

6.a) Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places using Taylor's theorem. [5M]

b) Expand log_e x in power of (x - 1) and hence evaluate log 1.1 correct to 4 decimal places using Taylor's theorem. [5M]

 a) Using Maclaurin's sexries expand *tanx* up to the fifth power of x and hence find the series for log(*secx*).

b) Evaluate
$$\int_0^1 x^2 \left(\log \frac{1}{x} \right)^3$$
 [5M]

8. a) Prove that
$$\int_0^1 \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5} B\left(\frac{2}{5}, \frac{1}{2}\right).$$
 [5M]

b) Prove that
$$\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2} \beta (1, \frac{1}{2}).$$
 [5M]

9. a) Prove that
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
. [5M]

b) Evaluate
$$\int_{0}^{\infty} \sqrt{x} e^{-x^2} dx$$
 [5M]

10. a) Prove that
$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cdot \cos^{2n-1}\theta \, d\theta$$
. [5M]

b) Prove that
$$\int_0^1 (\log \frac{1}{x})^{n-1} dx = \tau(n)$$
. [5M]

<u>UNIT –III</u>

1) a) Evaluate $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$. [2M] b) Define Total differential Coefficient. [2M] c) Find the stationary points of $f(x, y) = x^3+y^3 - 3axy$. [2M] d) Define CURL of a Vector. [2M]

e) If
$$\vec{f} = xy^2\vec{i} + 2x^2yz\vec{j} - 3yz^2\vec{k}$$
 find $div.\vec{f}$ at $(1, -1, 1)$. [2M]

2) a) Discuss the continuity of the function
$$f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & at(0, 0) \end{cases}$$
[5M]

b) If
$$U = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
; $x^2 + y^2 + z^2 \neq 0$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$ [5M]

3) a) If
$$u = \tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. [5M]

b) If
$$U = log(x^3 + y^3 + z^3 - 3xyz)$$
 prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(X+Y+Z)^2}$. [5M]

4) a) Find
$$\frac{du}{dt}$$
 as a total derivative; if $u = x^2 y^3$ where $x = logt$ and $y = e^t$ [5M]

b) If
$$z = xy^2 + x^2y$$
; where $x = at^2$, $y = 2at$, find $\frac{dz}{dt}$ as a total derivative. [5M]

5) a) If
$$u = \sin^{-1}(x - y)$$
, where $x = 3t$, $y = 4t^3$, then show that $\frac{du}{dt} = \frac{3}{\sqrt{1 - t^2}}$. [5M]

MATHEMATICS-I

b) If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{du}{dt} = ?$	[5M]
6) a) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$;	
(x>0,y>0)	[5M]
b) Find the stationary points of $u(x,y) = sinx.siny.sin(x + y)$ where $0 < x < \pi, 0 < x < \pi$	$y < \pi$
and find the maximum of u.	[5M]
7) a) Find the shortest distance from origin to the surface $xyz^2 = 2$.	[5M]
b) Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$.	[5M]
8) a) Find a point on the plane $3x + 2y + z - 12 = 0$, which is nearest to the origin.	[5M]
b) Find the shortest and longest distance from the point	
$(3,1,-1)$ to the sphere $x^2+y^2+z^2=4$	[5M]
9) a) Find the directional derivative of the fuction $f = x^2 - y^2 + 2z^2$ at the point $P = (1,2,3)$)
in the direction of the line PQ where $Q = (5,0,4)$.	[5M]
b) Find the directional derivative of $f(x, y, z) = 2xy + z^2$ at $(1, -1, 3)$ in the direction	
of $\vec{i} + 2\vec{j} + 3\vec{k}$.	[5M]
10) a) Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the	
point $(2, -1, 2)$.	[5M]
1) $\Gamma_{in}^{in} = 1 - \frac{1}{2} - 1$	[[]]

b) Find curl. \vec{f} where $\vec{f} = grad(x^3 + y^3 + z^3 - 3xyz)$. [5M]

UNIT –IV

1. a) Define Convergent and Divergent of a sequence	[2M]
b) Examine the sequence $a_n = 2^n$ for convergence.	[2M]
c) Define Sequence and Series.	[2M]
d) Test for convergence the series $\sum \frac{n^{s}}{3^{n}}$.	[2M]
e) Define Power Series.	[2M]

2. Examine the following sequences for convergence:

i)
$$a_n = \frac{n^2 - 2n}{3n^2 + n}$$
 ii) $a_n = 3 + (-1)^n$. [10M]

3. Show that the series $1 + r + r^2 + r^3 + \dots \infty$

i) Convergence if $ r < 1$	ii) Divergence if $r \ge 1$ and	iii) Oscillates if $r \leq -1$.	[10M]
-----------------------------	---------------------------------	----------------------------------	-------

- 4. Show that the p series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots \infty$
 - i) Converges for p > 1 ii) Diverges for $p \le 1$ [10M]
- 5. Test for convergence the series

i)
$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$$
 ii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$. [10M]

MATHEMATICS-I

6. Discuss the convergence of the series	i) $\sum \left(\frac{n!}{(n^n)^2}\right)$	ii) $1 + \frac{2!}{2^2} + \frac{3!}{3^8} + \frac{4!}{4^4} + \dots \infty$	[10M]
	3		

- 7. a) Test for convergence the series $\sum (1 + \frac{1}{\sqrt{n}})^{-n\overline{2}}$. [5M]
 - b) Discuss the nature of the series $\sum \frac{(n+1)^n x^n}{x^{n+1}}$. [5M]
- 8. State the value of x, for which the following series converge: i) $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - - - - - - \infty$. ii) $\frac{1}{1-x} + \frac{1}{2(1-x)^2} + \frac{1}{3(1-x)^3} + - - - - \infty$. [10M]
- 9. a) Show that the exponential series

1

$$+x + \frac{x^2}{2!} + - - + \frac{x^n}{n!} - - - \infty \quad \text{is convergent for all values of x.}$$
 [5M]

b) For what values of x the series $x + \frac{2!}{2^2}x^2 + \frac{3!}{3^3}x^3 + \dots + \frac{n!}{n^n}x^n + \dots$ is convergent. [5M]

10. a) Discuss the convergence of the series $\sum \frac{1}{\sqrt{n}} tan \frac{1}{n}$. [5M]

b) Test for convergence of the series
$$\sum \log \left(1 + \frac{1}{n}\right)$$
. [5M]

<u>UNIT –V</u>

1. a) Find Fourier coefficient b_n when $f(x) = e^x$ in $[-\pi, \pi]$.	[2M]
b) If $f(x) = \sin x $ in $-\pi < x < \pi$ then find Fourier coefficient a_0 .	[2M]
c) Find the half-range sine series for $f(x) = 1$ in $0, \pi$	[2M]
d) Obtain the Fourier series for $f(x) = \pi x$ in $0 \le x \le 2$	[2M]
e) Find Fourier constant a_0 for $f(x) = 1 - x^2$ in [-1,1].	[2M]
2. Find a Fourier series to represent the function $f(x) = e^x$ for $-\pi < x < \pi$. and	
hence derive a series for $\frac{\pi}{\sin h\pi}$.	[10M]
3. a) Obtain the Fourier series expansion of $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and	
deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{\pi^2}{6}$.	[5M]
b) Find the Fourier series for the function $f(x) = x$; in $-\pi < x < \pi$.	[5M]
4. Find the Fourier series to represent the function $f(x) = x^2$ for $-\pi < x < \pi$ and	
hence show that	
$(i)\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \dots - = \frac{\pi^2}{12}.$ $(ii)\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} - \dots - = \frac{\pi^2}{6}.$	
$(\text{iii})\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} = \frac{\pi^2}{8}$	[10M]
5. a) If $f(x) = \sin x $, expand $f(x)$ as a Fourier series in the interval $-\pi, \pi$	[5M]
b) Find the half range cosine series for $f(x) = x$ in the interval $0 \le x \le \pi$.	[5M]
6. Expand the function $f(x) = x $ in $-\pi < x < \pi$ as a Fourier series and	
Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} = \frac{\pi^2}{8}$	[10M]

MATHEMATICS-I

[10M]

7. Find the half range sine series for $f(x) = x(\pi - x)$ in the interval $0 \le x \le \pi$ and Deduce that $\frac{1}{1^8} - \frac{1}{3^8} + \frac{1}{5^8} - \frac{1}{7^8} - - - - = \frac{\pi^8}{32}$.

8. a) Expand $f(x) = e^{-x}$ as a fourier series in the interval (-1,1). [5M] b) Expand f(x) = |x| as a fourier series in the interval (-2,2). [5M]

- 9. a) Find the half range sine series expansion of $f(x) = x^2$ when 0 < x < 4. [5M]
 - b) Find the half range cosine series expansion of f(x) = x(2 x) in $0 \le x \le 2$. [5M]

10. Find half range fourier cosine series of $f(x) = (x - 1)^2$ in 0 < x < 1.

Hence show that (i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} - - - = \frac{\pi^2}{6}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$. [10M]